|
You are here |
www.ethanepperly.com | ||
| | | | |
francisbach.com
|
|
| | | | | ||
| | | | |
algassert.com
|
|
| | | | | Craig Gidney's computer science blog | |
| | | | |
nhigham.com
|
|
| | | | | The spectral radius $latex \rho(A)$ of a square matrix $latex A\in\mathbb{C}^{n\times n}$ is the largest absolute value of any eigenvalue of $LATEX A$: $latex \notag \rho(A) = \max\{\, |\lambda|: \lambda~ \mbox{is an eigenvalue of}~ A\,\}. $ For Hermitian matrices (or more generally normal matrices, those satisfying $LATEX AA^* = A^*A$) the spectral radius is just... | |
| | | | |
nofixedplans5.wordpress.com
|
|
| | | 1 post published by smkelly8 on May 27, 2017 | ||