|
You are here |
nhigham.com | ||
| | | | |
nla-group.org
|
|
| | | | | by Sven Hammarling and Nick Higham It is often thought that Jim Wilkinson developed backward error analysis because of his early involvement in solving systems of linear equations. In his 1970 Turing lecture [5] he described an experience, during world war II at the Armament Research Department, of solving a system of twelve linear equations | |
| | | | |
pfzhang.wordpress.com
|
|
| | | | | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers.... | |
| | | | |
stephenmalina.com
|
|
| | | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | | |
chava61photography.photo.blog
|
|
| | | Visit the post for more. | ||