Explore >> Select a destination


You are here

pfzhang.wordpress.com
| | algorithmsoup.wordpress.com
4.3 parsecs away

Travel
| | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite...
| | mikespivey.wordpress.com
2.4 parsecs away

Travel
| | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =...
| | nhigham.com
1.9 parsecs away

Travel
| | The Cayley-Hamilton Theorem says that a square matrix $LATEX A$ satisfies its characteristic equation, that is $latex p(A) = 0$ where $latex p(t) = \det(tI-A)$ is the characteristic polynomial. This statement is not simply the substitution ``$latex p(A) = \det(A - A) = 0$'', which is not valid since $latex t$ must remain a scalar...
| | fa.bianp.net
29.5 parsecs away

Travel
| The Langevin algorithm is a simple and powerful method to sample from a probability distribution. It's a key ingredient of some machine learning methods such as diffusion models and differentially private learning. In this post, I'll derive a simple convergence analysis of this method in the special case when the ...