Explore >> Select a destination


You are here

nhigham.com
| | stephenmalina.com
2.7 parsecs away

Travel
| | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4.
| | arkadiusz-jadczyk.eu
5.8 parsecs away

Travel
| | [AI summary] The blog post discusses the mathematical structure of anti-de Sitter (AdS) space, connecting it to the group SL(2,R) and exploring its geometric and algebraic properties through a pedagogical paper.
| | pfzhang.wordpress.com
1.9 parsecs away

Travel
| | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers....
| | thenumb.at
28.5 parsecs away

Travel
|