|
You are here |
nhigham.com | ||
| | | | |
pfzhang.wordpress.com
|
|
| | | | | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers.... | |
| | | | |
stephenmalina.com
|
|
| | | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | | |
g-w1.github.io
|
|
| | | | | A proof about roses? Who would have thought! | |
| | | | |
sansmap.wordpress.com
|
|
| | | hand written text by shel silverstein, poem published in his book 'Falling Up'; 1996 | ||