Explore >> Select a destination


You are here

stephenmalina.com
| | www.jeremykun.com
1.6 parsecs away

Travel
| | For fixed integers $ r > 0$, and odd $ g$, a Moore graph is an $ r$-regular graph of girth $ g$ which has the minimum number of vertices $ n$ among all such graphs with the same regularity and girth. (Recall, A the girth of a graph is the length of its shortest cycle, and it's regular if all its vertices have the same degree) Problem (Hoffman-Singleton): Find a useful constraint on the relationship between $ n$ and $ r$ for Moore graphs of girth $ 5$ and degree $ r$.
| | alok.github.io
4.5 parsecs away

Travel
| | Alok Singh's Blog
| | nhigham.com
1.4 parsecs away

Travel
| | The trace of an $latex n\times n$ matrix is the sum of its diagonal elements: $latex \mathrm{trace}(A) = \sum_{i=1}^n a_{ii}$. The trace is linear, that is, $latex \mathrm{trace}(A+B) = \mathrm{trace}(A) + \mathrm{trace}(B)$, and $latex \mathrm{trace}(A) = \mathrm{trace}(A^T)$. A key fact is that the trace is also the sum of the eigenvalues. The proof is by...
| | fabricebaudoin.blog
27.2 parsecs away

Travel
| In this lecture, we studySobolev inequalities on Dirichlet spaces. The approach we develop is related to Hardy-Littlewood-Sobolev theory The link between the Hardy-Littlewood-Sobolev theory and heat kernel upper bounds is due to Varopoulos, but the proof I give below I learnt it from my colleague RodrigoBaƱuelos. It bypasses the Marcinkiewicz interpolation theorem,that was originally used...