|
You are here |
stephenmalina.com | ||
| | | | |
www.jeremykun.com
|
|
| | | | | For fixed integers $ r > 0$, and odd $ g$, a Moore graph is an $ r$-regular graph of girth $ g$ which has the minimum number of vertices $ n$ among all such graphs with the same regularity and girth. (Recall, A the girth of a graph is the length of its shortest cycle, and it's regular if all its vertices have the same degree) Problem (Hoffman-Singleton): Find a useful constraint on the relationship between $ n$ and $ r$ for Moore graphs of girth $ 5$ and degree $ r$. | |
| | | | |
alok.github.io
|
|
| | | | | Alok Singh's Blog | |
| | | | |
nhigham.com
|
|
| | | | | The trace of an $latex n\times n$ matrix is the sum of its diagonal elements: $latex \mathrm{trace}(A) = \sum_{i=1}^n a_{ii}$. The trace is linear, that is, $latex \mathrm{trace}(A+B) = \mathrm{trace}(A) + \mathrm{trace}(B)$, and $latex \mathrm{trace}(A) = \mathrm{trace}(A^T)$. A key fact is that the trace is also the sum of the eigenvalues. The proof is by... | |
| | | | |
fabricebaudoin.blog
|
|
| | | In this lecture, we studySobolev inequalities on Dirichlet spaces. The approach we develop is related to Hardy-Littlewood-Sobolev theory The link between the Hardy-Littlewood-Sobolev theory and heat kernel upper bounds is due to Varopoulos, but the proof I give below I learnt it from my colleague RodrigoBaƱuelos. It bypasses the Marcinkiewicz interpolation theorem,that was originally used... | ||