You are here |
stephenmalina.com | ||
| | | |
mattbaker.blog
|
|
| | | | Test your intuition: is the following true or false? Assertion 1: If $latex A$ is a square matrix over a commutative ring $latex R$, the rows of $latex A$ are linearly independent over $latex R$ if and only if the columns of $latex A$ are linearly independent over $latex R$. (All rings in this post... | |
| | | |
francisbach.com
|
|
| | | | ||
| | | |
francisbach.com
|
|
| | | | ||
| | | |
mkatkov.wordpress.com
|
|
| | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... |