 
      
    | You are here | stephenmalina.com | ||
| | | | | mattbaker.blog | |
| | | | | Test your intuition: is the following true or false? Assertion 1: If $latex A$ is a square matrix over a commutative ring $latex R$, the rows of $latex A$ are linearly independent over $latex R$ if and only if the columns of $latex A$ are linearly independent over $latex R$. (All rings in this post... | |
| | | | | djalil.chafai.net | |
| | | | | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... | |
| | | | | hadrienj.github.io | |
| | | | | In this post, we will see special kinds of matrix and vectors the diagonal and symmetric matrices, the unit vector and the concept of orthogonality. | |
| | | | | algorithmsoup.wordpress.com | |
| | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | ||