|
You are here |
nickhar.wordpress.com | ||
| | | | |
nhigham.com
|
|
| | | | | A norm on $latex \mathbb{C}^{m \times n}$ is unitarily invariant if $LATEX \|UAV\| = \|A\|$ for all unitary $latex U\in\mathbb{C}^{m \times m}$ and $latex V\in\mathbb{C}^{n\times n}$ and for all $latex A\in\mathbb{C}^{m \times n}$. One can restrict the definition to real matrices, though the term unitarily invariant is still typically used. Two widely used matrix norms... | |
| | | | |
www.ethanepperly.com
|
|
| | | | | ||
| | | | |
lucatrevisan.wordpress.com
|
|
| | | | | We now discuss how to view proofs of certain regularity lemmas as applications of the FTRL methodology. The Szemeredi Regularity Lemma states (in modern language) that every dense graph is well approximate by a graph with a very simple structure, made of the (edge-disjoint) union of a constant number of weighted complete bipartite subgraphs. The... | |
| | | | |
jaberkow.wordpress.com
|
|
| | | Lately I have been making use of a continuous relaxation of discrete random variables proposed in two recent papers: The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables and Categorical Reparameterization with Gumbel-Softmax. I decided to write a blog post with some motivation of the method, as well as providing some minor clarification on... | ||