 
      
    | You are here | www.ethanepperly.com | ||
| | | | | www.jeremykun.com | |
| | | | | Machine learning is broadly split into two camps, statistical learning and non-statistical learning. The latter we've started to get a good picture of on this blog; we approached Perceptrons, decision trees, and neural networks from a non-statistical perspective. And generally "statistical" learning is just that, a perspective. Data is phrased in terms of independent and dependent variables, and statistical techniques are leveraged against the data. In this post we'll focus on the simplest example of thi... | |
| | | | | fa.bianp.net | |
| | | | | The Langevin algorithm is a simple and powerful method to sample from a probability distribution. It's a key ingredient of some machine learning methods such as diffusion models and differentially private learning. In this post, I'll derive a simple convergence analysis of this method in the special case when the ... | |
| | | | | francisbach.com | |
| | | | | ||
| | | | | fabricebaudoin.blog | |
| | | In this section, we consider a diffusion operator $latex L=\sum_{i,j=1}^n \sigma_{ij} (x) \frac{\partial^2}{ \partial x_i \partial x_j} +\sum_{i=1}^n b_i (x)\frac{\partial}{\partial x_i}, $ where $latex b_i$ and $latex \sigma_{ij}$ are continuous functions on $latex \mathbb{R}^n$ and for every $latex x \in \mathbb{R}^n$, the matrix $latex (\sigma_{ij}(x))_{1\le i,j\le n}$ is a symmetric and non negative matrix. Our... | ||