|
You are here |
fabricebaudoin.blog | ||
| | | | |
mikespivey.wordpress.com
|
|
| | | | | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =... | |
| | | | |
djalil.chafai.net
|
|
| | | | | The logarithmic potential is a classical object of potential theory intimately connected with the two dimensional Laplacian. It appears also in free probability theory via the free entropy, and in partial differential equations e.g. Patlak-Keller-Segel models. This post concerns only it usage for the spectra of non Hermitian random matrices. Let \( {\mathcal{P}(\mathbb{C})} \) be the set of probability measures... | |
| | | | |
qchu.wordpress.com
|
|
| | | | | As a warm-up to the subject of this blog post, consider the problem of how to classify$latex n \times m$ matrices $latex M \in \mathbb{R}^{n \times m}$ up to change of basis in both the source ($latex \mathbb{R}^m$) and the target ($latex \mathbb{R}^n$). In other words, the problem is todescribe the equivalence classes of the... | |
| | | | |
sansmap.wordpress.com
|
|
| | | hand written text by shel silverstein, poem published in his book 'Falling Up'; 1996 | ||