Explore >> Select a destination


You are here

fabricebaudoin.blog
| | nhigham.com
2.6 parsecs away

Travel
| | A norm on $latex \mathbb{C}^{m \times n}$ is unitarily invariant if $LATEX \|UAV\| = \|A\|$ for all unitary $latex U\in\mathbb{C}^{m \times m}$ and $latex V\in\mathbb{C}^{n\times n}$ and for all $latex A\in\mathbb{C}^{m \times n}$. One can restrict the definition to real matrices, though the term unitarily invariant is still typically used. Two widely used matrix norms...
| | qchu.wordpress.com
2.7 parsecs away

Travel
| | As a warm-up to the subject of this blog post, consider the problem of how to classify$latex n \times m$ matrices $latex M \in \mathbb{R}^{n \times m}$ up to change of basis in both the source ($latex \mathbb{R}^m$) and the target ($latex \mathbb{R}^n$). In other words, the problem is todescribe the equivalence classes of the...
| | mikespivey.wordpress.com
2.9 parsecs away

Travel
| | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =...
| | blog.evjang.com
29.1 parsecs away

Travel
| JAX is a great linear algebra + automatic differentiation library for fast experimentation with and teaching machine learning. Here is a li...