Explore >> Select a destination


You are here

fabricebaudoin.blog
| | mikespivey.wordpress.com
3.2 parsecs away

Travel
| | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =...
| | djalil.chafai.net
2.3 parsecs away

Travel
| | The logarithmic potential is a classical object of potential theory intimately connected with the two dimensional Laplacian. It appears also in free probability theory via the free entropy, and in partial differential equations e.g. Patlak-Keller-Segel models. This post concerns only it usage for the spectra of non Hermitian random matrices. Let \( {\mathcal{P}(\mathbb{C})} \) be the set of probability measures...
| | qchu.wordpress.com
2.7 parsecs away

Travel
| | As a warm-up to the subject of this blog post, consider the problem of how to classify$latex n \times m$ matrices $latex M \in \mathbb{R}^{n \times m}$ up to change of basis in both the source ($latex \mathbb{R}^m$) and the target ($latex \mathbb{R}^n$). In other words, the problem is todescribe the equivalence classes of the...
| | sansmap.wordpress.com
17.5 parsecs away

Travel
| hand written text by shel silverstein, poem published in his book 'Falling Up'; 1996