|
You are here |
fabricebaudoin.blog | ||
| | | | |
nhigham.com
|
|
| | | | | A norm on $latex \mathbb{C}^{m \times n}$ is unitarily invariant if $LATEX \|UAV\| = \|A\|$ for all unitary $latex U\in\mathbb{C}^{m \times m}$ and $latex V\in\mathbb{C}^{n\times n}$ and for all $latex A\in\mathbb{C}^{m \times n}$. One can restrict the definition to real matrices, though the term unitarily invariant is still typically used. Two widely used matrix norms... | |
| | | | |
qchu.wordpress.com
|
|
| | | | | As a warm-up to the subject of this blog post, consider the problem of how to classify$latex n \times m$ matrices $latex M \in \mathbb{R}^{n \times m}$ up to change of basis in both the source ($latex \mathbb{R}^m$) and the target ($latex \mathbb{R}^n$). In other words, the problem is todescribe the equivalence classes of the... | |
| | | | |
mikespivey.wordpress.com
|
|
| | | | | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =... | |
| | | | |
blog.evjang.com
|
|
| | | JAX is a great linear algebra + automatic differentiation library for fast experimentation with and teaching machine learning. Here is a li... | ||