|
You are here |
jmanton.wordpress.com | ||
| | | | |
extremal010101.wordpress.com
|
|
| | | | | With Alexandros Eskenazis we posted a paper on arxiv "Learning low-degree functions from a logarithmic number of random queries" exponentially improving randomized query complexity for low degree functions. Perhaps a very basic question one asks in learning theory is as follows: there is an unknown function $latex f : \{-1,1\}^{n} \to \mathbb{R}$, and we are... | |
| | | | |
mathematicaloddsandends.wordpress.com
|
|
| | | | | I recently learned of Craig's formula for the Gaussian Q-function from this blog post from John Cook. Here is the formula: Proposition (Craig's formula). Let $latex Z$ be a standard normal random variable. Then for any $latex z \geq 0$, defining $latex \begin{aligned} \mathbb{P}\{ Z \geq z\} = Q(z) = \dfrac{1}{\sqrt{2\pi}} \int_z^\infty \exp \left( -... | |
| | | | |
dominiczypen.wordpress.com
|
|
| | | | | Let $latex \omega$ denote the first infinite cardinal - that is, the set of non-negative integers. Let $latex p_0 = 2$ be the smallest prime number, and let $latex (p_n)_{n\in\omega}$ enumerate all prime numbers in ascending order. Let $latex \mathcal{U}$ be a free ultrafilter on $latex \omega$. We consider the field $latex F = \big(\prod_{n\in\omega}\mathbb{Z}/p_n\mathbb{Z}\big)/{\mathcal... | |
| | | | |
rapuran.wordpress.com
|
|
| | | More on Weekly Travel Theme | ||