|
You are here |
jmanton.wordpress.com | ||
| | | | |
mathematicaloddsandends.wordpress.com
|
|
| | | | | I recently learned of Craig's formula for the Gaussian Q-function from this blog post from John Cook. Here is the formula: Proposition (Craig's formula). Let $latex Z$ be a standard normal random variable. Then for any $latex z \geq 0$, defining $latex \begin{aligned} \mathbb{P}\{ Z \geq z\} = Q(z) = \dfrac{1}{\sqrt{2\pi}} \int_z^\infty \exp \left( -... | |
| | | | |
mkatkov.wordpress.com
|
|
| | | | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | |
| | | | |
dominiczypen.wordpress.com
|
|
| | | | | Let $latex \omega$ denote the first infinite cardinal - that is, the set of non-negative integers. Let $latex p_0 = 2$ be the smallest prime number, and let $latex (p_n)_{n\in\omega}$ enumerate all prime numbers in ascending order. Let $latex \mathcal{U}$ be a free ultrafilter on $latex \omega$. We consider the field $latex F = \big(\prod_{n\in\omega}\mathbb{Z}/p_n\mathbb{Z}\big)/{\mathcal... | |
| | | | |
chava61photography.photo.blog
|
|
| | | Visit the post for more. | ||