|
You are here |
nhigham.com | ||
| | | | |
djalil.chafai.net
|
|
| | | | | Let $X$ be an $n\times n$ complex matrix. The eigenvalues $\lambda_1(X), \ldots, \lambda_n(X)$ of $X$ are the roots in $\mathbb{C}$ of its characteristic polynomial. We label them in such a way that $\displaystyle |\lambda_1(X)|\geq\cdots\geq|\lambda_n(X)|$ with growing phases. The spectral radius of $X$ is $\rho(X):=|\lambda_1(X)|$. The singular values $\displaystyle s_1(X)\geq\cdots\geq s_n(X)$ of $X$ are the eigenvalues of the positive semi-definite Hermitian... | |
| | | | |
nickhar.wordpress.com
|
|
| | | | | 1. Low-rank approximation of matrices Let $latex {A}&fg=000000$ be an arbitrary $latex {n \times m}&fg=000000$ matrix. We assume $latex {n \leq m}&fg=000000$. We consider the problem of approximating $latex {A}&fg=000000$ by a low-rank matrix. For example, we could seek to find a rank $latex {s}&fg=000000$ matrix $latex {B}&fg=000000$ minimizing $latex { \lVert A - B... | |
| | | | |
www.ethanepperly.com
|
|
| | | | | ||
| | | | |
ropmann.wordpress.com
|
|
| | | Visit the post for more. | ||