Explore >> Select a destination


You are here

nhigham.com
| | djalil.chafai.net
2.3 parsecs away

Travel
| | Let $X$ be an $n\times n$ complex matrix. The eigenvalues $\lambda_1(X), \ldots, \lambda_n(X)$ of $X$ are the roots in $\mathbb{C}$ of its characteristic polynomial. We label them in such a way that $\displaystyle |\lambda_1(X)|\geq\cdots\geq|\lambda_n(X)|$ with growing phases. The spectral radius of $X$ is $\rho(X):=|\lambda_1(X)|$. The singular values $\displaystyle s_1(X)\geq\cdots\geq s_n(X)$ of $X$ are the eigenvalues of the positive semi-definite Hermitian...
| | blog.georgeshakan.com
3.1 parsecs away

Travel
| | In this post, I talk about the mathematical foundations of PCA
| | fabricebaudoin.blog
2.6 parsecs away

Travel
| | In this section, we consider a diffusion operator $latex L=\sum_{i,j=1}^n \sigma_{ij} (x) \frac{\partial^2}{ \partial x_i \partial x_j} +\sum_{i=1}^n b_i (x)\frac{\partial}{\partial x_i}, $ where $latex b_i$ and $latex \sigma_{ij}$ are continuous functions on $latex \mathbb{R}^n$ and for every $latex x \in \mathbb{R}^n$, the matrix $latex (\sigma_{ij}(x))_{1\le i,j\le n}$ is a symmetric and non negative matrix. Our...
| | lucatrevisan.wordpress.com
25.9 parsecs away

Travel
| Welcome to phase two of in theory, in which we again talk about math. I spent last Fall teaching two courses and getting settled, I mostly traveled in January and February, and I have spent the last two months on my sofa catching up on TV series. Hence I will reach back to last Spring,...