|
You are here |
fa.bianp.net | ||
| | | | |
yang-song.net
|
|
| | | | | This blog post focuses on a promising new direction for generative modeling. We can learn score functions (gradients of log probability density functions) on a large number of noise-perturbed data distributions, then generate samples with Langevin-type sampling. The resulting generative models, often called score-based generative models, has several important advantages over existing model families: GAN-level sample quality without adversarial training, flexible model architectures, exact log-likelihood ... | |
| | | | |
jxmo.io
|
|
| | | | | A primer on variational autoencoders (VAEs) culminating in a PyTorch implementation of a VAE with discrete latents. | |
| | | | |
djalil.chafai.net
|
|
| | | | | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... | |
| | | | |
zserge.com
|
|
| | | Neural network and deep learning introduction for those who skipped the math class but wants to follow the trend | ||