Explore >> Select a destination


You are here

xorshammer.com
| | almostsuremath.com
12.2 parsecs away

Travel
| | A martingale is a stochastic process which stays the same, on average. That is, the expected future value conditional on the present is equal to the current value. Examples include the wealth of a gambler as a function of time, assuming that he is playing a fair game. The canonical example of a continuous time...
| | pfzhang.wordpress.com
7.3 parsecs away

Travel
| | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers....
| | jmanton.wordpress.com
8.1 parsecs away

Travel
| | If $latex Y$ is a $latex \sigma(X)$-measurable random variable then there exists a Borel-measurable function $latex f \colon \mathbb{R} \rightarrow \mathbb{R}$ such that $latex Y = f(X)$. The standard proof of this fact leaves several questions unanswered. This note explains what goes wrong when attempting a "direct" proof. It also explains how the standard proof...
| | djalil.chafai.net
71.2 parsecs away

Travel
| Let $X$ be an $n\times n$ complex matrix. The eigenvalues $\lambda_1(X), \ldots, \lambda_n(X)$ of $X$ are the roots in $\mathbb{C}$ of its characteristic polynomial. We label them in such a way that $\displaystyle |\lambda_1(X)|\geq\cdots\geq|\lambda_n(X)|$ with growing phases. The spectral radius of $X$ is $\rho(X):=|\lambda_1(X)|$. The singular values $\displaystyle s_1(X)\geq\cdots\geq s_n(X)$ of $X$ are the eigenvalues of the positive semi-definite Hermitian...