|
You are here |
nhigham.com | ||
| | | | |
nickhar.wordpress.com
|
|
| | | | | 1. Low-rank approximation of matrices Let $latex {A}&fg=000000$ be an arbitrary $latex {n \times m}&fg=000000$ matrix. We assume $latex {n \leq m}&fg=000000$. We consider the problem of approximating $latex {A}&fg=000000$ by a low-rank matrix. For example, we could seek to find a rank $latex {s}&fg=000000$ matrix $latex {B}&fg=000000$ minimizing $latex { \lVert A - B... | |
| | | | |
djalil.chafai.net
|
|
| | | | | This post is devoted to few convex and compact sets of matrices that I like. The set \( {\mathcal{C}_n} \) of correlation matrices. A real \( {n\times n} \) matrix \( {C} \) is a correlation matrix when \( {C} \) is symmetric, semidefinite positive, with unit diagonal. This means that \[ C_{ii}=1, \quad C_{ji}=C_{ji},\quad \left\geq0 \] for every \(... | |
| | | | |
qchu.wordpress.com
|
|
| | | | | As a warm-up to the subject of this blog post, consider the problem of how to classify$latex n \times m$ matrices $latex M \in \mathbb{R}^{n \times m}$ up to change of basis in both the source ($latex \mathbb{R}^m$) and the target ($latex \mathbb{R}^n$). In other words, the problem is todescribe the equivalence classes of the... | |
| | | | |
ddarmon.github.io
|
|
| | | |||