Explore >> Select a destination


You are here

fabricebaudoin.blog
| | algorithmsoup.wordpress.com
4.7 parsecs away

Travel
| | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite...
| | almostsuremath.com
5.1 parsecs away

Travel
| | The martingale property is strong enough to ensure that, under relatively weak conditions, we are guaranteed convergence of the processes as time goes to infinity. In a previous post, I used Doob's upcrossing inequality to show that, with probability one, discrete-time martingales will converge at infinity under the extra condition of $latex {L^1}&fg=000000$-boundedness. Here, I...
| | stevensoojin.kim
3.5 parsecs away

Travel
| | A survey of Poincaré inequalities appearing outside of PDE.
| | stephenmalina.com
21.6 parsecs away

Travel
| Matrix Potpourri # As part of reviewing Linear Algebra for my Machine Learning class, I've noticed there's a bunch of matrix terminology that I didn't encounter during my proof-based self-study of LA from Linear Algebra Done Right. This post is mostly intended to consolidate my own understanding and to act as a reference to future me, but if it also helps others in a similar position, that's even better!