|
You are here |
fabricebaudoin.blog | ||
| | | | |
algorithmsoup.wordpress.com
|
|
| | | | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | |
| | | | |
almostsuremath.com
|
|
| | | | | The martingale property is strong enough to ensure that, under relatively weak conditions, we are guaranteed convergence of the processes as time goes to infinity. In a previous post, I used Doob's upcrossing inequality to show that, with probability one, discrete-time martingales will converge at infinity under the extra condition of $latex {L^1}&fg=000000$-boundedness. Here, I... | |
| | | | |
stevensoojin.kim
|
|
| | | | | A survey of Poincaré inequalities appearing outside of PDE. | |
| | | | |
stephenmalina.com
|
|
| | | Matrix Potpourri # As part of reviewing Linear Algebra for my Machine Learning class, I've noticed there's a bunch of matrix terminology that I didn't encounter during my proof-based self-study of LA from Linear Algebra Done Right. This post is mostly intended to consolidate my own understanding and to act as a reference to future me, but if it also helps others in a similar position, that's even better! | ||