Explore >> Select a destination


You are here

almostsuremath.com
| | jmanton.wordpress.com
7.5 parsecs away

Travel
| | If $latex Y$ is a $latex \sigma(X)$-measurable random variable then there exists a Borel-measurable function $latex f \colon \mathbb{R} \rightarrow \mathbb{R}$ such that $latex Y = f(X)$. The standard proof of this fact leaves several questions unanswered. This note explains what goes wrong when attempting a "direct" proof. It also explains how the standard proof...
| | djalil.chafai.net
11.5 parsecs away

Travel
| | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for...
| | cp4space.hatsya.com
10.6 parsecs away

Travel
| | In the early 1930s, Pascual Jordan attempted to formalise the algebraic properties of Hermitian matrices. In particular: Hermitian matrices form a real vector space: we can add and subtract Hermitian matrices, and multiply them by real scalars. That is to say, if $latex \lambda, \mu \in \mathbb{R}$ and $latex A, B$ are Hermitian matrices, then...
| | fa.bianp.net
81.5 parsecs away

Travel
| Backtracking step-size strategies (also known as adaptive step-size or approximate line-search) that set the step-size based on a sufficient decrease condition are the standard way to set the step-size on gradient descent and quasi-Newton methods. However, these techniques are typically not used for Frank-Wolfe-like algorithms. In this blog post I discuss a backtracking line-search for the Frank-Wolfe algorithm.