|
You are here |
djalil.chafai.net | ||
| | | | |
nickhar.wordpress.com
|
|
| | | | | 1. Low-rank approximation of matrices Let $latex {A}&fg=000000$ be an arbitrary $latex {n \times m}&fg=000000$ matrix. We assume $latex {n \leq m}&fg=000000$. We consider the problem of approximating $latex {A}&fg=000000$ by a low-rank matrix. For example, we could seek to find a rank $latex {s}&fg=000000$ matrix $latex {B}&fg=000000$ minimizing $latex { \lVert A - B... | |
| | | | |
mkatkov.wordpress.com
|
|
| | | | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | |
| | | | |
www.randomservices.org
|
|
| | | | | [AI summary] The text covers various topics in probability and statistics, including continuous distributions, empirical density functions, and data analysis. It discusses the uniform distribution, rejection sampling, and the construction of continuous distributions without probability density functions. The text also includes data analysis exercises involving empirical density functions for body weight, body length, and gender-specific body weight. | |
| | | | |
jxmo.io
|
|
| | | A primer on variational autoencoders (VAEs) culminating in a PyTorch implementation of a VAE with discrete latents. | ||