You are here |
djalil.chafai.net | ||
| | | |
fabricebaudoin.blog
|
|
| | | | In this section, we consider a diffusion operator $latex L=\sum_{i,j=1}^n \sigma_{ij} (x) \frac{\partial^2}{ \partial x_i \partial x_j} +\sum_{i=1}^n b_i (x)\frac{\partial}{\partial x_i}, $ where $latex b_i$ and $latex \sigma_{ij}$ are continuous functions on $latex \mathbb{R}^n$ and for every $latex x \in \mathbb{R}^n$, the matrix $latex (\sigma_{ij}(x))_{1\le i,j\le n}$ is a symmetric and non negative matrix. Our... | |
| | | |
mkatkov.wordpress.com
|
|
| | | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | |
| | | |
francisbach.com
|
|
| | | | ||
| | | |
andreasimonecosta.dev
|
|
| | Let's learn something about graph theory to properly clone JavaScript objects, both with and without circular references. |