|
You are here |
xorshammer.com | ||
| | | | |
jmanton.wordpress.com
|
|
| | | | | If $latex Y$ is a $latex \sigma(X)$-measurable random variable then there exists a Borel-measurable function $latex f \colon \mathbb{R} \rightarrow \mathbb{R}$ such that $latex Y = f(X)$. The standard proof of this fact leaves several questions unanswered. This note explains what goes wrong when attempting a "direct" proof. It also explains how the standard proof... | |
| | | | |
almostsuremath.com
|
|
| | | | | The aim of this post is to motivate the idea of representing probability spaces as states on a commutative algebra. We will consider how this abstract construction relates directly to classical probabilities. In the standard axiomatization of probability theory, due to Kolmogorov, the central construct is a probability space $latex {(\Omega,\mathcal F,{\mathbb P})}&fg=000000$. This consists... | |
| | | | |
thatsmaths.com
|
|
| | | | | The rational numbers $latex {\mathbb{Q}}&fg=000000$ are dense in the real numbers $latex {\mathbb{R}}&fg=000000$. The cardinality of rational numbers in the interval $latex {(0,1)}&fg=000000$ is $latex {\boldsymbol{\aleph}_0}&fg=000000$. We cannot list them in ascending order, because there is no least rational number greater than $latex {0}&fg=000000$. However, there are several ways of enumerating the rational numbers. The... | |
| | | | |
www.jeremykun.com
|
|
| | | This article was written by my colleague, Cathie Yun. Cathie is an applied cryptographer and security engineer, currently working with me to make fully homomorphic encryption a reality at Google. She's also done a lot of cool stuff with zero knowledge proofs. In previous articles, we've discussed techniques used in Fully Homomorphic Encryption (FHE) schemes. The basis for many FHE schemes, as well as other privacy-preserving protocols, is the Learning With Errors (LWE) problem. | ||