|
You are here |
almostsuremath.com | ||
| | | | |
qchu.wordpress.com
|
|
| | | | | (Part I of this post ishere) Let $latex p(n)$ denote the partition function, which describes the number of ways to write $latex n$ as a sum of positive integers, ignoring order. In 1918 Hardy and Ramanujan proved that $latex p(n)$ is given asymptotically by $latex \displaystyle p(n) \approx \frac{1}{4n \sqrt{3}} \exp \left( \pi \sqrt{ \frac{2n}{3}... | |
| | | | |
mattbaker.blog
|
|
| | | | | In my last blog post, I discussed a simple proof of the fact that pi is irrational. That pi is in fact transcendental was first proved in 1882 by Ferdinand von Lindemann, who showed that if $latex \alpha$ is a nonzero complex number and $latex e^\alpha$ is algebraic, then $latex \alpha$ must be transcendental. Since... | |
| | | | |
francisbach.com
|
|
| | | | | ||
| | | | |
francisbach.com
|
|
| | | |||