|
You are here |
qchu.wordpress.com | ||
| | | | |
www.jeremykun.com
|
|
| | | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | | |
almostsuremath.com
|
|
| | | | | In today's post, I investigate a simple recurrence relation and show how it is possible to describe its behaviour asymptotically at large times. The relation describing how the series evolves at a time n will depend both on its value at the earlier time n/2 and on whether n is even or odd, which, as... | |
| | | | |
fredrikj.net
|
|
| | | | | ||
| | | | |
fa.bianp.net
|
|
| | | The Langevin algorithm is a simple and powerful method to sample from a probability distribution. It's a key ingredient of some machine learning methods such as diffusion models and differentially private learning. In this post, I'll derive a simple convergence analysis of this method in the special case when the ... | ||