You are here |
qchu.wordpress.com | ||
| | | |
www.jeremykun.com
|
|
| | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | |
francisbach.com
|
|
| | | | ||
| | | |
francisbach.com
|
|
| | | | ||
| | | |
jmanton.wordpress.com
|
|
| | If $latex Y$ is a $latex \sigma(X)$-measurable random variable then there exists a Borel-measurable function $latex f \colon \mathbb{R} \rightarrow \mathbb{R}$ such that $latex Y = f(X)$. The standard proof of this fact leaves several questions unanswered. This note explains what goes wrong when attempting a "direct" proof. It also explains how the standard proof... |