|
You are here |
mattbaker.blog | ||
| | | | |
qchu.wordpress.com
|
|
| | | | | (Part I of this post ishere) Let $latex p(n)$ denote the partition function, which describes the number of ways to write $latex n$ as a sum of positive integers, ignoring order. In 1918 Hardy and Ramanujan proved that $latex p(n)$ is given asymptotically by $latex \displaystyle p(n) \approx \frac{1}{4n \sqrt{3}} \exp \left( \pi \sqrt{ \frac{2n}{3}... | |
| | | | |
almostsuremath.com
|
|
| | | | | The aim of this post is to motivate the idea of representing probability spaces as states on a commutative algebra. We will consider how this abstract construction relates directly to classical probabilities. In the standard axiomatization of probability theory, due to Kolmogorov, the central construct is a probability space $latex {(\Omega,\mathcal F,{\mathbb P})}&fg=000000$. This consists... | |
| | | | |
francisbach.com
|
|
| | | | | ||
| | | | |
localtvwhnt.wordpress.com
|
|
| | | Reblogged on WordPress.com | ||