Explore >> Select a destination


You are here

chessapig.github.io
| | djalil.chafai.net
5.7 parsecs away

Travel
| | Let $X$ be an $n\times n$ complex matrix. The eigenvalues $\lambda_1(X), \ldots, \lambda_n(X)$ of $X$ are the roots in $\mathbb{C}$ of its characteristic polynomial. We label them in such a way that $\displaystyle |\lambda_1(X)|\geq\cdots\geq|\lambda_n(X)|$ with growing phases. The spectral radius of $X$ is $\rho(X):=|\lambda_1(X)|$. The singular values $\displaystyle s_1(X)\geq\cdots\geq s_n(X)$ of $X$ are the eigenvalues of the positive semi-definite Hermitian...
| | francisbach.com
6.9 parsecs away

Travel
| |
| | www.jeremykun.com
6.6 parsecs away

Travel
| | This proof assumes knowledge of complex analysis, specifically the notions of analytic functions and Liouville's Theorem (which we will state below). The fundamental theorem of algebra has quite a few number of proofs (enough to fill a book!). In fact, it seems a new tool in mathematics can prove its worth by being able to prove the fundamental theorem in a different way. This series of proofs of the fundamental theorem also highlights how in mathematics there are many many ways to prove a single theorem...
| | mikespivey.wordpress.com
30.4 parsecs away

Travel
| Equations of the form $latex x^3 = y^2 + k$ are called Mordell equations. In this post we're going to prove that the equation $latex x^3 = y^2 -7$ has no integer solutions, using (with one exception) nothing more complicated than congruences. Theorem: There are no integer solutions to the equation $latex x^3 = y^2...