You are here |
nulliq.dev | ||
| | | |
www.reedbeta.com
|
|
| | | | When you read BRDF theory papers, you'll often see mention of slope space. Sometimes, components of the BRDF such as NDFs or masking-shadowing functions are defined in slope space, or operations are done in slope space before being converted back to ordinary vectors or polar coordinates. However, the meaning and intuition of slope space is rarely explained. Since it may not be obvious exactly what slope space is, why it is useful, or how to transform things to and from it, I thought I would write down a ... | |
| | | |
stephenmalina.com
|
|
| | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | |
www.jeremykun.com
|
|
| | | | The standard inner product of two vectors has some nice geometric properties. Given two vectors $ x, y \in \mathbb{R}^n$, where by $ x_i$ I mean the $ i$-th coordinate of $ x$, the standard inner product (which I will interchangeably call the dot product) is defined by the formula $$\displaystyle \langle x, y \rangle = x_1 y_1 + \dots + x_n y_n$$ This formula, simple as it is, produces a lot of interesting geometry. | |
| | | |
questionableengineering.com
|
|
| | John W Grun AbstractIn this paper, a manually implemented LeNet-5 convolutional NN with an Adam optimizer written in Numpy will be presented. This paper will also cover a description of the data use |