You are here |
xorshammer.com | ||
| | | |
billwadge.com
|
|
| | | | The famous mathematician Kurt Gödel proved two "incompleteness" theorems. This is their story. By the 1930s logicians, especially Tarski, had figured out the semantics of predicate logic. Tarski described what exactly was an 'interpretation' and what it meant for a formula to be true in an interpretation. Briefly, an interpretation is a nonempty set (the... | |
| | | |
rjlipton.com
|
|
| | | | An approach to consistency that could work... Kurt Gödel is feeling bored. Not quite in our English sense of "bored": German has a word Weltschmerz meaning "world-weariness." In Kurt's case it's Überweltschmerz. We have tried for over a month to get him to do another interview like several times before, but he keeps saying there's... | |
| | | |
unstableontology.com
|
|
| | | | (note: one may find the embedded LaTeX more readable on LessWrong) The Löwenheim-Skolem theorem implies, among other things, that any first-order theory whose symbols are countable, and which has an infinite model, has a countably infinite model. This means that, in attempting to refer to uncountably infinite structures (such as in set theory), one "may... | |
| | | |
djalil.chafai.net
|
|
| | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... |