|
You are here |
www.logicmatters.net | ||
| | | | |
carcinisation.com
|
|
| | | | | Gödel's theorems say something important about the limits of mathematical proof. Proofs in mathematics are (among other things) arguments. A typical mathematical argument may not be "inside" the universe it's saying something about. The Pythagorean theorem is a statement about the geometry of triangles, but it's hard to make a proof of it using nothing... | |
| | | | |
xorshammer.com
|
|
| | | | | Let $latex \mathrm{PA}$ be Peano Arithmetic. Gödel's Second Incompleteness Theorem says that no consistent theory $latex T$ extending $latex \mathrm{PA}$ can prove its own consistency. (I'll write $latex \mathrm{Con}(T)$ for the statement asserting $latex T$'s consistency; more on this later.) In particular, $latex \mathrm{PA} + \mathrm{Con}(\mathrm{PA})$ is stronger than $latex \mathrm{PA}$. But certainly, given that... | |
| | | | |
unstableontology.com
|
|
| | | | | (note: some readers may find the LaTeX more readable on LessWrong.) In this post I prove a variant of Gödel's completeness theorem. My intention has been to really understand the theorem, so that I am not simply shuffling symbols around, but am actually understanding why it is true. I hope it is helpful for at... | |
| | | | |
www.brainific.com
|
|
| | | |||