|
You are here |
rjlipton.com | ||
| | | | |
xorshammer.com
|
|
| | | | | Let $latex \mathrm{PA}$ be Peano Arithmetic. Gödel's Second Incompleteness Theorem says that no consistent theory $latex T$ extending $latex \mathrm{PA}$ can prove its own consistency. (I'll write $latex \mathrm{Con}(T)$ for the statement asserting $latex T$'s consistency; more on this later.) In particular, $latex \mathrm{PA} + \mathrm{Con}(\mathrm{PA})$ is stronger than $latex \mathrm{PA}$. But certainly, given that... | |
| | | | |
unstableontology.com
|
|
| | | | | (note: some readers may find the LaTeX more readable on LessWrong.) In this post I prove a variant of Gödel's completeness theorem. My intention has been to really understand the theorem, so that I am not simply shuffling symbols around, but am actually understanding why it is true. I hope it is helpful for at... | |
| | | | |
billwadge.com
|
|
| | | | | The famous mathematician Kurt Gödel proved two "incompleteness" theorems. This is their story. By the 1930s logicians, especially Tarski, had figured out the semantics of predicate logic. Tarski described what exactly was an 'interpretation' and what it meant for a formula to be true in an interpretation. Briefly, an interpretation is a nonempty set (the... | |
| | | | |
xvw.lol
|
|
| | | Using the module system open and include statements to reproduce common import patterns from other languages | ||