Explore >> Select a destination


You are here

billwadge.com
| | www.jeremykun.com
15.6 parsecs away

Travel
| | The Blessing of Distance We have often mentioned the idea of a "metric" on this blog, and we briefly described a formal definition for it. Colloquially, a metric is simply the mathematical notion of a distance function, with certain well-behaved properties. Since we're now starting to cover a few more metrics (and things which are distinctly not metrics) in the context of machine learning algorithms, we find it pertinent to lay out the definition once again, discuss some implications, and explore a few basic examples.
| | awwalker.com
11.0 parsecs away

Travel
| | For many calculus students, Riemann sums are those annoying things that show up in the derivation of the arc length formula. In truth, these handy sums have done so much more. In this post, I'll give some examples of Riemann sums dating from before the birth of calculus and some applications of Riemann sums that...
| | njwildberger.com
13.2 parsecs away

Travel
| | https://www.youtube.com/watch?v=fUCha98unY4&feature=youtu.be Hi everyone, I'm Norman Wildberger, a soon-to-be retired professor of mathematics at UNSW in Sydney Australia, and I want to tell you about this channel which will introduce you to a wide variety of mathematical topics with a novel slant. The content is aimed at a very broad audience from everyday people with an...
| | nhigham.com
93.3 parsecs away

Travel
| For a polynomial $latex \notag \phi(t) = a_kt^k + \cdots + a_1t + a_0, $ where $latex a_k\in\mathbb{C}$ for all $latex k$, the matrix polynomial obtained by evaluating $latex \phi$ at $latex A\in\mathbb{C}^{n \times n}$ is $latex \notag \phi(A) = a_kA^k + \cdots + a_1A + a_0 I. $ (Note that the constant term is...