|
You are here |
nhigham.com | ||
| | | | |
www.ethanepperly.com
|
|
| | | | | ||
| | | | |
djalil.chafai.net
|
|
| | | | | Let $X$ be an $n\times n$ complex matrix. The eigenvalues $\lambda_1(X), \ldots, \lambda_n(X)$ of $X$ are the roots in $\mathbb{C}$ of its characteristic polynomial. We label them in such a way that $\displaystyle |\lambda_1(X)|\geq\cdots\geq|\lambda_n(X)|$ with growing phases. The spectral radius of $X$ is $\rho(X):=|\lambda_1(X)|$. The singular values $\displaystyle s_1(X)\geq\cdots\geq s_n(X)$ of $X$ are the eigenvalues of the positive semi-definite Hermitian... | |
| | | | |
xorshammer.com
|
|
| | | | | There are a number of applications of logic to ordinary mathematics, with the most coming from (I believe) model theory. One of the easiest and most striking that I know is called Ax's Theorem. Ax's Theorem: For all polynomial functions $latex f\colon \mathbb{C}^n\to \mathbb{C}^n$, if $latex f$ is injective, then $latex f$ is surjective. Very... | |
| | | | |
francisbach.com
|
|
| | | |||