|
You are here |
kpknudson.com | ||
| | | | |
pfzhang.wordpress.com
|
|
| | | | | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers.... | |
| | | | |
thatsmaths.com
|
|
| | | | | In last week's post, we defined an extension of parity from the integers to the rational numbers. Three parity classes were found --- even, odd and none. This week, we show that, with an appropriate ordering or enumeration of the rationals, the three classes are not only equinumerate (having the same cardinality) but of equal... | |
| | | | |
xorshammer.com
|
|
| | | | | There are a number of applications of logic to ordinary mathematics, with the most coming from (I believe) model theory. One of the easiest and most striking that I know is called Ax's Theorem. Ax's Theorem: For all polynomial functions $latex f\colon \mathbb{C}^n\to \mathbb{C}^n$, if $latex f$ is injective, then $latex f$ is surjective. Very... | |
| | | | |
craftofcoding.wordpress.com
|
|
| | | Programming Made Easy The basics of Programming The Basics of julia Coding in Fortran Coding in ada | ||