|
You are here |
unstableontology.com | ||
| | | | |
daniellefong.com
|
|
| | | | | The following occurred to me on a run about two years ago: It's not given much press, but the the Halting Problem is intimately related to Gödel's First Incompleteness Theorem. Indeed it produces it as a correllary. Historically, Gödel's incompleteness results were proved by hacking arithmetic into a Turing complete system, and this is still... | |
| | | | |
neilmadden.blog
|
|
| | | | | I saw another article on Gödel's incompleteness theorems linked from Reddit today. It's a topic I've wanted to write about for some time. Although many articles do a decent job in giving an idea of what the big deal is (and this one is pretty good), they can sometimes give a misleading impression of what... | |
| | | | |
xorshammer.com
|
|
| | | | | Let $latex \mathrm{PA}$ be Peano Arithmetic. Gödel's Second Incompleteness Theorem says that no consistent theory $latex T$ extending $latex \mathrm{PA}$ can prove its own consistency. (I'll write $latex \mathrm{Con}(T)$ for the statement asserting $latex T$'s consistency; more on this later.) In particular, $latex \mathrm{PA} + \mathrm{Con}(\mathrm{PA})$ is stronger than $latex \mathrm{PA}$. But certainly, given that... | |
| | | | |
www.quantamagazine.org
|
|
| | | His incompleteness theorems destroyed the search for a mathematical theory of everything. Nearly a century later, we're still coming to grips with the... | ||