Explore >> Select a destination


You are here

jiggerwit.wordpress.com
| | alanrendall.wordpress.com
2.3 parsecs away

Travel
| | The theorem of the title is about dividing smooth functions by other smooth functions or, in other words, representing a given smooth function in terms of products of other smooth functions. A large part of the account which follows is based on that in the book 'Normal Forms and Unfoldings for Local Dynamical Systems' by...
| | mathematicaloddsandends.wordpress.com
2.7 parsecs away

Travel
| | I recently came across this theorem on John Cook's blog that I wanted to keep for myself for future reference: Theorem. Let $latex f$ be a function so that $latex f^{(n+1)}$ is continuous on $latex [a,b]$ and satisfies $latex |f^{(n+1)}(x)| \leq M$. Let $latex p$ be a polynomial of degree $latex \leq n$ that interpolates...
| | mikespivey.wordpress.com
2.5 parsecs away

Travel
| | Equations of the form $latex x^3 = y^2 + k$ are called Mordell equations. In this post we're going to prove that the equation $latex x^3 = y^2 -7$ has no integer solutions, using (with one exception) nothing more complicated than congruences. Theorem: There are no integer solutions to the equation $latex x^3 = y^2...
| | gqbi.wordpress.com
18.7 parsecs away

Travel
|