|
You are here |
jiggerwit.wordpress.com | ||
| | | | |
mikespivey.wordpress.com
|
|
| | | | | Equations of the form $latex x^3 = y^2 + k$ are called Mordell equations. In this post we're going to prove that the equation $latex x^3 = y^2 -7$ has no integer solutions, using (with one exception) nothing more complicated than congruences. Theorem: There are no integer solutions to the equation $latex x^3 = y^2... | |
| | | | |
algorithmsoup.wordpress.com
|
|
| | | | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | |
| | | | |
mathematicaloddsandends.wordpress.com
|
|
| | | | | I recently came across this theorem on John Cook's blog that I wanted to keep for myself for future reference: Theorem. Let $latex f$ be a function so that $latex f^{(n+1)}$ is continuous on $latex [a,b]$ and satisfies $latex |f^{(n+1)}(x)| \leq M$. Let $latex p$ be a polynomial of degree $latex \leq n$ that interpolates... | |
| | | | |
codeexplainer.wordpress.com
|
|
| | | I have decided to move my content to a different platform - details to follow very soon. | ||