|
You are here |
grossack.site | ||
| | | | |
ncatlab.org
|
|
| | | | | ||
| | | | |
www.jeremykun.com
|
|
| | | | | The First Isomorphism Theorem The meat of our last primer was a proof that quotient groups are well-defined. One important result that helps us compute groups is a very easy consequence of this well-definition. Recall that if $ G,H$ are groups and $ \varphi: G \to H$ is a group homomorphism, then the image of $ \varphi$ is a subgroup of $ H$. Also the kernel of $ \varphi$ is the normal subgroup of $ G$ consisting of the elements which are mapped to the identity under $ \varphi$. | |
| | | | |
qchu.wordpress.com
|
|
| | | | | In this post we'll describe the representation theory of theadditive group scheme$latex \mathbb{G}_a$ over a field $latex k$. The answer turns out to depend dramatically on whether or not $latex k$ has characteristic zero. Preliminaries over an arbitrary ring (All rings and algebras are commutative unless otherwise stated.) The additive group scheme $latex \mathbb{G}_a$ over... | |
| | | | |
lucatrevisan.wordpress.com
|
|
| | | Welcome to phase two of in theory, in which we again talk about math. I spent last Fall teaching two courses and getting settled, I mostly traveled in January and February, and I have spent the last two months on my sofa catching up on TV series. Hence I will reach back to last Spring,... | ||