 
      
    | You are here | www.jeremykun.com | ||
| | | | | almostsuremath.com | |
| | | | | The aim of this post is to motivate the idea of representing probability spaces as states on a commutative algebra. We will consider how this abstract construction relates directly to classical probabilities. In the standard axiomatization of probability theory, due to Kolmogorov, the central construct is a probability space $latex {(\Omega,\mathcal F,{\mathbb P})}&fg=000000$. This consists... | |
| | | | | thenumb.at | |
| | | | | ||
| | | | | francisbach.com | |
| | | | | ||
| | | | | www.jeremykun.com | |
| | | Decidability Versus Efficiency In the early days of computing theory, the important questions were primarily about decidability. What sorts of problems are beyond the power of a Turing machine to solve? As we saw in our last primer on Turing machines, the halting problem is such an example: it can never be solved a finite amount of time by a Turing machine. However, more recently (in the past half-century) the focus of computing theory has shifted away from possibility in favor of determining feasibility. | ||