|
You are here |
www.jeremykun.com | ||
| | | | |
djalil.chafai.net
|
|
| | | | | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... | |
| | | | |
micromath.wordpress.com
|
|
| | | | | Continuing the theme of alternative approaches to teaching calculus, I take the liberty of posting a letter sent by Donald Knuth to to the Notices of the American Mathematical Society in March, 1998 (TeX file). Professor Anthony W. Knapp P O Box 333 East Setauket, NY 11733 Dear editor, I am pleased to see so... | |
| | | | |
thenumb.at
|
|
| | | | | [AI summary] This text provides an in-depth exploration of how functions can be treated as vectors, particularly in the context of signal and geometry processing. It discusses the representation of functions as infinite-dimensional vectors, the use of Fourier transforms in various domains (such as 1D, spherical, and mesh-based), and the application of linear algebra to functions for tasks like compression and smoothing. The text also touches on the mathematical foundations of these concepts, including the Laplace operator, eigenfunctions, and orthonormal bases. It concludes with a list of further reading topics and acknowledges the contributions of reviewers. | |
| | | | |
scottaaronson.blog
|
|
| | | In Michael Sipser's Introduction to the Theory of Computation textbook, he has one Platonically perfect homework exercise, so perfect that I can reconstruct it from memory despite not having opened the book for over a decade. It goes like this: Let f:{0,1}*?{0,1} be the constant 1 function if God exists, or the constant 0 function... | ||