You are here |
mathematicaloddsandends.wordpress.com | ||
| | | |
fabricebaudoin.blog
|
|
| | | | In this section, we consider a diffusion operator $latex L=\sum_{i,j=1}^n \sigma_{ij} (x) \frac{\partial^2}{ \partial x_i \partial x_j} +\sum_{i=1}^n b_i (x)\frac{\partial}{\partial x_i}, $ where $latex b_i$ and $latex \sigma_{ij}$ are continuous functions on $latex \mathbb{R}^n$ and for every $latex x \in \mathbb{R}^n$, the matrix $latex (\sigma_{ij}(x))_{1\le i,j\le n}$ is a symmetric and non negative matrix. Our... | |
| | | |
statisticaloddsandends.wordpress.com
|
|
| | | | I just came across a really interesting and simple algorithm for estimating the number of distinct elements in a stream of data. The paper (Chakraborty et al. 2023) is available on arXiv; see this Quanta article (Reference 2) for a layman's explanation. Problem statement Let's state the problem formally. Let's say we are given a... | |
| | | |
mkatkov.wordpress.com
|
|
| | | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | |
| | | |
4uinews.wordpress.com
|
|
| | ?? ????? ???? ?? ??????? ???? ?? ???? ???? ?? ????? ?? ????? ????? ?? ????? ???? 1978 ??? ?????? ?? ?? ?? ??? ??? ????? ?????? ?? ???? ???????? ?? ?????? ???? ?? ??? ???? ?? ?????? ?? ?? ???? ??? ?? ???? ??? ?? ????? ??? ??? ?? ???????????? ?? ?? ??? ???... |