|
You are here |
yufeizhao.com | ||
| | | | |
www.jeremykun.com
|
|
| | | | | For fixed integers $ r > 0$, and odd $ g$, a Moore graph is an $ r$-regular graph of girth $ g$ which has the minimum number of vertices $ n$ among all such graphs with the same regularity and girth. (Recall, A the girth of a graph is the length of its shortest cycle, and it's regular if all its vertices have the same degree) Problem (Hoffman-Singleton): Find a useful constraint on the relationship between $ n$ and $ r$ for Moore graphs of girth $ 5$ and degree $ r$. | |
| | | | |
symomega.wordpress.com
|
|
| | | | | I've just returned to Perth after giving one of the plenary talks at the "10th Slovenian Conference on Graph Theory" held in small ski-resort town of Kranjska Gora. I had never been to Slovenia before and hadn't realised how spectacularly beautiful it is. Lush green forests, steep mountains and azure alpine lakes complemented with a... | |
| | | | |
nhigham.com
|
|
| | | | | The Cayley-Hamilton Theorem says that a square matrix $LATEX A$ satisfies its characteristic equation, that is $latex p(A) = 0$ where $latex p(t) = \det(tI-A)$ is the characteristic polynomial. This statement is not simply the substitution ``$latex p(A) = \det(A - A) = 0$'', which is not valid since $latex t$ must remain a scalar... | |
| | | | |
algorithmsoup.wordpress.com
|
|
| | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | ||