|
You are here |
lucatrevisan.wordpress.com | ||
| | | | |
nhigham.com
|
|
| | | | | The spectral radius $latex \rho(A)$ of a square matrix $latex A\in\mathbb{C}^{n\times n}$ is the largest absolute value of any eigenvalue of $LATEX A$: $latex \notag \rho(A) = \max\{\, |\lambda|: \lambda~ \mbox{is an eigenvalue of}~ A\,\}. $ For Hermitian matrices (or more generally normal matrices, those satisfying $LATEX AA^* = A^*A$) the spectral radius is just... | |
| | | | |
nickhar.wordpress.com
|
|
| | | | | 1. Low-rank approximation of matrices Let $latex {A}&fg=000000$ be an arbitrary $latex {n \times m}&fg=000000$ matrix. We assume $latex {n \leq m}&fg=000000$. We consider the problem of approximating $latex {A}&fg=000000$ by a low-rank matrix. For example, we could seek to find a rank $latex {s}&fg=000000$ matrix $latex {B}&fg=000000$ minimizing $latex { \lVert A - B... | |
| | | | |
algorithmsoup.wordpress.com
|
|
| | | | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | |
| | | | |
caitlinsanswersforhumanitiesclass.wordpress.com
|
|
| | | This is the excerpt for your very first post. | ||