|
You are here |
arkadiusz-jadczyk.eu | ||
| | | | |
akos.ma
|
|
| | | | | From the wonderful book by Ian Stewart, here are the equations themselves; read the book to know more about them. | |
| | | | |
stephenmalina.com
|
|
| | | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | | |
blog.autarkaw.com
|
|
| | | | | ||
| | | | |
www.paepper.com
|
|
| | | Today's paper: Rethinking 'Batch' in BatchNorm by Wu & Johnson BatchNorm is a critical building block in modern convolutional neural networks. Its unique property of operating on "batches" instead of individual samples introduces significantly different behaviors from most other operations in deep learning. As a result, it leads to many hidden caveats that can negatively impact model's performance in subtle ways. This is a citation from the paper's abstract and the emphasis is mine which caught my attention. Let's explore these subtle ways which can negatively impact your model's performance! The paper of Wu & Johnson can be found on arxiv. | ||