|
You are here |
nlml.github.io | ||
| | | | |
janakiev.com
|
|
| | | | | There are many ways to compare countries and cities and many measurements to choose from. We can see how they perform economically, or how their demographics differ, but what if we take a look at data available in OpenStreetMap? In this article, we explore just that with the help of a procedure called t-SNE. | |
| | | | |
www.jeremykun.com
|
|
| | | | | Machine learning is broadly split into two camps, statistical learning and non-statistical learning. The latter we've started to get a good picture of on this blog; we approached Perceptrons, decision trees, and neural networks from a non-statistical perspective. And generally "statistical" learning is just that, a perspective. Data is phrased in terms of independent and dependent variables, and statistical techniques are leveraged against the data. In this post we'll focus on the simplest example of thi... | |
| | | | |
dennybritz.com
|
|
| | | | | All the code is also available as an Jupyter notebook on Github. | |
| | | | |
mkatkov.wordpress.com
|
|
| | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | ||