|
You are here |
mattbaker.blog | ||
| | | | |
nhigham.com
|
|
| | | | | The Cayley-Hamilton Theorem says that a square matrix $LATEX A$ satisfies its characteristic equation, that is $latex p(A) = 0$ where $latex p(t) = \det(tI-A)$ is the characteristic polynomial. This statement is not simply the substitution ``$latex p(A) = \det(A - A) = 0$'', which is not valid since $latex t$ must remain a scalar... | |
| | | | |
djalil.chafai.net
|
|
| | | | | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... | |
| | | | |
andrea.corbellini.name
|
|
| | | | | ||
| | | | |
www.vanimpe.eu
|
|
| | | Cryptography Introduction Cheatsheet, Private Communications in a Public World | ||