You are here |
xorshammer.com | ||
| | | |
www.jeremykun.com
|
|
| | | | Last time we defined and gave some examples of rings. Recapping, a ring is a special kind of group with an additional multiplication operation that "plays nicely" with addition. The important thing to remember is that a ring is intended to remind us arithmetic with integers (though not too much: multiplication in a ring need not be commutative). We proved some basic properties, like zero being unique and negation being well-behaved. | |
| | | |
mattbaker.blog
|
|
| | | | Test your intuition: is the following true or false? Assertion 1: If $latex A$ is a square matrix over a commutative ring $latex R$, the rows of $latex A$ are linearly independent over $latex R$ if and only if the columns of $latex A$ are linearly independent over $latex R$. (All rings in this post... | |
| | | |
pfzhang.wordpress.com
|
|
| | | | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers.... | |
| | | |
nickhar.wordpress.com
|
|
| | The algorithm for probabilistically embedding metric spaces into trees has numerous theoretical applications. It is a key tool in the design of many approximation algorithms and online algorithms. Today we will illustrate the usefulness of these trees in designing an algorithm for the online Steiner tree problem. 1. Online Steiner Tree Let $latex {G=(V,E)}&fg=000000$ be... |