|
You are here |
almostsuremath.com | ||
| | | | |
mkatkov.wordpress.com
|
|
| | | | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | |
| | | | |
jmanton.wordpress.com
|
|
| | | | | If $latex Y$ is a $latex \sigma(X)$-measurable random variable then there exists a Borel-measurable function $latex f \colon \mathbb{R} \rightarrow \mathbb{R}$ such that $latex Y = f(X)$. The standard proof of this fact leaves several questions unanswered. This note explains what goes wrong when attempting a "direct" proof. It also explains how the standard proof... | |
| | | | |
www.randomservices.org
|
|
| | | | | ||
| | | | |
blog.apaonline.org
|
|
| | | "[C]onfusion about the foundations of the subject is responsible, in my opinion, for much of the misuse of the statistics that one meets in fields of application such as medicine, psychology, sociology, economics, and so forth." (George Barnard 1985, p. 2) "Relevant clarifications of the nature and roles of statistical evidence in scientific research may | ||