You are here |
autarkaw.wordpress.com | ||
| | | |
blog.autarkaw.com
|
|
| | | | ||
| | | |
blog.autarkaw.com
|
|
| | | | ||
| | | |
blog.autarkaw.com
|
|
| | | | ||
| | | |
nhigham.com
|
|
| | A Householder matrix is an $latex n\times n$ orthogonal matrix of the form $latex \notag P = I - \displaystyle\frac{2}{v^Tv} vv^T, \qquad 0 \ne v \in\mathbb{R}^n. $ It is easily verified that $LATEX P$ is orthogonal ($LATEX P^TP = I$), symmetric ($LATEX P^T = P$), involutory ($LATEX P^2 = I$ that is, $LATEX P$ is... |