Explore >> Select a destination


You are here

almostsuremath.com
| | francisbach.com
13.4 parsecs away

Travel
| |
| | yang-song.net
12.6 parsecs away

Travel
| | This blog post focuses on a promising new direction for generative modeling. We can learn score functions (gradients of log probability density functions) on a large number of noise-perturbed data distributions, then generate samples with Langevin-type sampling. The resulting generative models, often called score-based generative models, has several important advantages over existing model families: GAN-level sample quality without adversarial training, flexible model architectures, exact log-likelihood ...
| | djalil.chafai.net
13.8 parsecs away

Travel
| | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for...
| | mcyoung.xyz
39.6 parsecs away

Travel
| [AI summary] This text provides an in-depth explanation of linear algebra concepts, including vector spaces, linear transformations, matrix multiplication, and field extensions. It emphasizes the importance of understanding these concepts through the lens of linear maps and their composition, which naturally leads to the matrix multiplication formula. The text also touches on the distinction between vector spaces and abelian groups, and discusses the concept of field extensions, such as [R:Q] and [C:R]. The author mentions their art blog and acknowledges their own drawing of the content.