Explore >> Select a destination


You are here

nbodyphysics.com
| | www.reedbeta.com
15.9 parsecs away

Travel
| | Pixels and polygons and shaders, oh my!
| | arkadiusz-jadczyk.eu
11.3 parsecs away

Travel
| | We continue Becoming anti de Sitter. Every matrix $\Xi$ in the Lie algebra o(2,2) generates one-parameter group $e^{\Xi t}$ of linear transformations of $\mathbf{R}^4.$ Vectors tangent to orbits of this group form a vector field. Let us find the formula for the vector field generated by $\Xi.
| | stephenmalina.com
15.0 parsecs away

Travel
| | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4.
| | francisbach.com
99.2 parsecs away

Travel
|