|
You are here |
chessapig.github.io | ||
| | | | |
jiggerwit.wordpress.com
|
|
| | | | | In the texbook I'm using for a first course in algebraic geometry, the proof of Bezout's theorem is awful. Looking around, I find an abundance of awful proofs. A good proof is one that I would want to commit to memory. Here is a good proof of Bezout's theorem, which is due to Gurjar and... | |
| | | | |
stephenmalina.com
|
|
| | | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | | |
ncatlab.org
|
|
| | | | | ||
| | | | |
dominiczypen.wordpress.com
|
|
| | | Let $latex \omega$ denote the first infinite cardinal - that is, the set of non-negative integers. Let $latex p_0 = 2$ be the smallest prime number, and let $latex (p_n)_{n\in\omega}$ enumerate all prime numbers in ascending order. Let $latex \mathcal{U}$ be a free ultrafilter on $latex \omega$. We consider the field $latex F = \big(\prod_{n\in\omega}\mathbb{Z}/p_n\mathbb{Z}\big)/{\mathcal... | ||