|
You are here |
cronokirby.com | ||
| | | | |
www.jeremykun.com
|
|
| | | | | The First Isomorphism Theorem The meat of our last primer was a proof that quotient groups are well-defined. One important result that helps us compute groups is a very easy consequence of this well-definition. Recall that if $ G,H$ are groups and $ \varphi: G \to H$ is a group homomorphism, then the image of $ \varphi$ is a subgroup of $ H$. Also the kernel of $ \varphi$ is the normal subgroup of $ G$ consisting of the elements which are mapped to the identity under $ \varphi$. | |
| | | | |
mattbaker.blog
|
|
| | | | | In my previous post, I presented a proof of the existence portion of the structure theorem for finitely generated modules over a PID based on the Smith Normal Form of a matrix. In this post, I'd like to explain how the uniqueness portion of that theorem is actually a special case of a more general... | |
| | | | |
thehousecarpenter.wordpress.com
|
|
| | | | | NB: I've opted to just get straight to the point with this post rather than attempting to introduce the subject first, so it may be of little interest to readers who aren't already interested in proving the completeness theorem for propositional logic. A PDF version of this document is available here. The key thing I... | |
| | | | |
thisandthatthenextpart.wordpress.com
|
|
| | | Visit the post for more. | ||