|
You are here |
mycqstate.wordpress.com | ||
| | | | |
nickhar.wordpress.com
|
|
| | | | | 1. Low-rank approximation of matrices Let $latex {A}&fg=000000$ be an arbitrary $latex {n \times m}&fg=000000$ matrix. We assume $latex {n \leq m}&fg=000000$. We consider the problem of approximating $latex {A}&fg=000000$ by a low-rank matrix. For example, we could seek to find a rank $latex {s}&fg=000000$ matrix $latex {B}&fg=000000$ minimizing $latex { \lVert A - B... | |
| | | | |
www.depthfirstlearning.com
|
|
| | | | | ||
| | | | |
www.jeremykun.com
|
|
| | | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | | |
djalil.chafai.net
|
|
| | | This post is devoted to few convex and compact sets of matrices that I like. The set \( {\mathcal{C}_n} \) of correlation matrices. A real \( {n\times n} \) matrix \( {C} \) is a correlation matrix when \( {C} \) is symmetric, semidefinite positive, with unit diagonal. This means that \[ C_{ii}=1, \quad C_{ji}=C_{ji},\quad \left\geq0 \] for every \(... | ||