Explore >> Select a destination


You are here

mycqstate.wordpress.com
| | nickhar.wordpress.com
9.2 parsecs away

Travel
| | 1. Low-rank approximation of matrices Let $latex {A}&fg=000000$ be an arbitrary $latex {n \times m}&fg=000000$ matrix. We assume $latex {n \leq m}&fg=000000$. We consider the problem of approximating $latex {A}&fg=000000$ by a low-rank matrix. For example, we could seek to find a rank $latex {s}&fg=000000$ matrix $latex {B}&fg=000000$ minimizing $latex { \lVert A - B...
| | www.depthfirstlearning.com
10.8 parsecs away

Travel
| |
| | www.jeremykun.com
11.2 parsecs away

Travel
| | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis).
| | djalil.chafai.net
70.6 parsecs away

Travel
| This post is devoted to few convex and compact sets of matrices that I like. The set \( {\mathcal{C}_n} \) of correlation matrices. A real \( {n\times n} \) matrix \( {C} \) is a correlation matrix when \( {C} \) is symmetric, semidefinite positive, with unit diagonal. This means that \[ C_{ii}=1, \quad C_{ji}=C_{ji},\quad \left\geq0 \] for every \(...