|
You are here |
nulliq.dev | ||
| | | | |
stephenmalina.com
|
|
| | | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | | |
blog.wesleyac.com
|
|
| | | | | Designing State-Space controllers | |
| | | | |
www.reedbeta.com
|
|
| | | | | Pixels and polygons and shaders, oh my! | |
| | | | |
cambridge163.wordpress.com
|
|
| | | This is the excerpt for your very firstpost. | ||