|
You are here |
felipec.wordpress.com | ||
| | | | |
fundamenta.micro.blog
|
|
| | | | | En física, una partícula elemental es una entidad fundamental que desafía definiciones simples: puede entenderse como la excitación cuántica de un campo, la representación matemática de simetrías o la manifestación de información cuántica, lo que refleja la complejidad y el misterio de la realidad: What is a Particle? » ???? | |
| | | | |
dominiczypen.wordpress.com
|
|
| | | | | Let $latex \omega$ denote the first infinite cardinal - that is, the set of non-negative integers. Let $latex p_0 = 2$ be the smallest prime number, and let $latex (p_n)_{n\in\omega}$ enumerate all prime numbers in ascending order. Let $latex \mathcal{U}$ be a free ultrafilter on $latex \omega$. We consider the field $latex F = \big(\prod_{n\in\omega}\mathbb{Z}/p_n\mathbb{Z}\big)/{\mathcal... | |
| | | | |
mathematicaloddsandends.wordpress.com
|
|
| | | | | The function $latex f(x) = x \log x$ occurs in various places across math/statistics/machine learning (e.g. in the definition of entropy), and I thought I'd put a list of properties of the function here that I've found useful. Here is a plot of the function: $latex f$ is defined on $latex (0, \infty)$. The only... | |
| | | | |
qchu.wordpress.com
|
|
| | | (Part I of this post ishere) Let $latex p(n)$ denote the partition function, which describes the number of ways to write $latex n$ as a sum of positive integers, ignoring order. In 1918 Hardy and Ramanujan proved that $latex p(n)$ is given asymptotically by $latex \displaystyle p(n) \approx \frac{1}{4n \sqrt{3}} \exp \left( \pi \sqrt{ \frac{2n}{3}... | ||