|
You are here |
alok.github.io | ||
| | | | |
stephenmalina.com
|
|
| | | | | Selected Exercises # 5.A # 12. Define $ T \in \mathcal L(\mathcal P_4(\mathbf{R})) $ by $$ (Tp)(x) = xp'(x) $$ for all $ x \in \mathbf{R} $. Find all eigenvalues and eigenvectors of $ T $. Observe that, if $ p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 $, then $$ x p'(x) = a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + 4 a_4 x^4. | |
| | | | |
ckrao.wordpress.com
|
|
| | | | | In this post I would like to prove the following identity, motivated by this tweet. $latex \displaystyle n! \prod_{k=0}^n \frac{1}{x+k} = \frac{1}{x\binom{x+n}{n}} = \sum_{k=0}^n \frac{(-1)^k \binom{n}{k}}{x+k}$ The first of these equalities is straightforward by the definition of binomial coefficients. To prove the second, we make use of partial fractions. We write the expansion $latex \displaystyle... | |
| | | | |
mikespivey.wordpress.com
|
|
| | | | | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =... | |
| | | | |
sarahgoodreau.com
|
|
| | | Visit the post for more. | ||